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Equilibrium Shapes of Crystals Attached to Walls 
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We discuss equilibrium shapes of crystals attached to walls. Optimal shapes for 
different configurations of walls are found and the minimality of the overall 
surface tension is proven with the help of a simple geometrical argument based 
on the isoperimetric inequality and monotonicity. Stability results in the form of 
Bonnesen inequalities are obtained in the two-dimensional case. 

KEY WORDS: Wulff's construction; equilibrium crystal shapes; Winterbot- 
tom's construction. 

1. INTRODUCTION 

In this paper we present simple mathematical  arguments allowing us to 
discuss the equilibrium_ _shape of a droplet of a phase C, called the crys ta l  
inside a phase M, calied the medium, when C and M are two phases in 
equilibrium. The phase C need not be a real crystal; when adopting this 
terminology we stress that we consider general anisotropic surface tension. 
In particular, we show that the corresponding variational problems can be 
solved by purely geometrical means also in the presence of walls. While the 
many facets of statistical mechanics of equilibrium shapes are reviewed in 
refs. 18 and 22, for results concerning droplets in the presence of walls see, 
e.g., refs. 21, 23, and 24. The method discussed in the present paper covers, 
in spite of its limitations, several cases of interest which are treated in the 
literature. No t  all results here are new; however, we present them in a 
unified manner  using only several basic principles. In this way, we can 
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simplify and improve results in the literature. Our conclusions are the 
strongest for dimension two-- in  that case we also have stability results. 

All arguments are based just on the isoperimetric inequality and on 
monotonicity. We first recall this inequality and then formulate the basic 
variational problem which we want to solve. It turns out that with the help 
of monotonicity arguments that are strongly reminiscent of those used in 
the method of "correlation inequalities" one can find optimal shapes for 
different arrangements of walls. We treat different cases solvable by this 
method in increasing order of complexity. 

1.1. Isoperimetric Inequality 

Different statements about optimal shapes of crystals are proven with 
the help of the isoperimetric inequality, which we state as follows. Let 
W c  R d be a convex body, and let zw(n) be its support funct ion assigning 
to a unit vector n the value 

r w ( n ) =  sup ( x l n )  (1) 
x E  H z 

with ( x l n )  denoting the scalar product. Notice that if the origin of the 
coordinates is outside the set W, the support function attains negative 
values for some directions n. In (1), (x, n) is the Euclidean scalar product. 

Considering a set V c  R a with a sufficiently smooth boundary 3 c~V= ~,, 
we define the functional 

( .  

r w(~') = l r w(n(s)) ds (2) 
% 

where n(s) is the exterior unit normal. The isoperimetric inequality is 

r w ( 7 ) >1 d l WI lid I Vl (a- l )/a (I) 

where I WI, I VI denote the (Lebesgue) volumes of W, V, respectively. The 
equality in (I) occurs only when V equals, up to dilation and translation, 
the set W. The set V need not be connected. The basic idea of the proof of 

s The isoperimetric inequality can be proven for very general V. The purpose of the paper is 
to present some consequences of the isoperimetric inequality. Thus the hypotheses which we 
need are those leading to the isoperimetric inequality [and such that the functional rw('~') 
below be well defined]. It is not our intention to discuss this point here; see, e.g., ref. 10 for 
a recent paper on the subject. Having situations arising in physics in mind, we restrict our- 
selves to simple cases. For example, in dimension two we may assume that the boundary of 
V can be approximated by polygonal lines. 
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(I) is simple if presented in a geometrical language (see ref. 5 and for a 
general proof ref. 19). Namely, one first expresses the functional z w(Y) in a 
geometrical manner as 

Iv+~wI-  IVl 
rw(7) = lim (G) 

~0 

Here, V+eWdenotes the union Ux~ v (x+eW), and eW= {ex: x~ W}. The 
inequality (I) then follows by applying the Brunn-Minkowski inequality to 
IV+ eWI. When W is the unit ball, the equality (I) is the classical isoperi- 
metric inequality, and a proof of (G) for very general V can be found in 
ref. 9. 

Remarks. I. As an immediate corollary of the representation (G) 
we see that the functional will not change if we replace the set W by its 
translation W' = W+ a, 

Zw,(y) = rw(7) (3) 

Another way of showing (3) is to observe that the change W into W' 
amounts to the change rw(n) into r w , ( a ) = z w ( n ) + ( a  I n), and that the 
integral ~ (a I n(s)) ds vanishes. We use such shifts in different situations. 

2. A consequence of the above remark is that the functional Zw(7) is 
always nonnegative. Indeed, it is always possible to shift the origin into the 
interior of W, and then rw(n) is positive for all n. 

3. From (I), or by a direct computation using (G), the minimum of 
the functional is 

min rw(OV)=d[W[ (4) 
v :  I v l  = I Wl 

In addition to the isoperimetric inequality (I), the stability of the 
minimum in (I) can be controlled in the two-dimensional case. Namely, if 
rw(~') is close to the minimal value on the right-hand side of (I), the set V 
is geometrically close to W in a uniform way. Introducing 

b(y)=sup{r:r. W+ x~- V f o r s o m e x e R  z} (5a) 

and 

R(y) = inf{R: R- W+ x = Vfor some x ~ R ~} (5b) 



422 Kotock~ and Pfister 

to measure the geometrical resemblance of V with W, one has 

~w(7)- [ r  w(7) 2 - 4  I Wl. I Vl]  1/2 
2 IWl 

~< ~r w('e) + [~,,,(~')> - 4 t W l - I  vt ] ' ;2 

2 IWI 
(s) 

Inequalities (S) are the generalized Bonnesen inequalities, which are proven 
in Theorem 2.5 in ref. 8. 

1.2. Var ia t iona l  Problem 

Our aim is to use (I) and (S) to find the ideal shape of the crystal C 
inside the medium M in the presence of one or several walls. Let us first 
recall the free situation. The shape of the crystal is obtained by minimizing 
the overall surface tension of the crystal."" 14. 35) Let n be a unit vector in R a, 
and consider the situation with phases C and M coexisting over a hyper- 
plane perpendicular to n, {x: (x I n ) = a } .  We use z(n) to denote the inter- 
face free energy, or surface tension, corresponding to such an interface in the 
situation of the phase C occupying the half-space {x: (xln)~< a}. We sup- 
pose that the surface tension z is given and assume that it is strictly positive 
and lower semicontinuous, but we do not require the symmetry 
~ ( n ) = T ( - n ) .  We denote by F the set of R d occupied by the phase C, and 
its boundary by 7 = OF. The overall interface free energy of the phase C is 
given by 

r(~):=Iz(n(s))ds (6) 

We always suppose that the boundary 7 of F is sufficiently smooth (see foot- 
note 3). The variational problem is to minimize (6) under the constraint that 
the total volume IFI occupied by the phase C is fixed. Given a set W, we say 
that a crystal has shape W if after a translation and a dilatation it equals W. 

The solution of the variational problem is given below. 12~ Notice first 
that the problem is scale-invariant, so that if we can solve it for a given 
volume of the phase C, we get the solution for other volumes by an 
appropriate scaling. Let W~ be defined by the so-called Wulff construction 

W~= {xe Ra: (x t n)<~t(n) for every n} (w) 

We show that this set yields the optimal shape for the crystal. 
We first state some elementary properties of W e. The set IV, is convex 
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since it is given by the intersection of hyperplanes. If we extend the surface 
tension r(n) to all R a as a positively homogeneous function of degree one, 
we get 

We= {x~ R'~: r*(x)~<0} (7) 

where ~* is the Legendre transform of T, v * ( x ) = s u p , [ ( x l n ) - r ( n ) ] .  
Actually r * ( x ) =  0 if x ~ W~, and r * ( x ) =  + ~  otherwise. The support func- 
tion of IV, is given by 

~w,(n) = z**(n) (8) 

By the methods of convex analysis it can be shown that for almost all x one 
has 

r**(nx) = r(nx) (9) 

Equation (9) implies the important result that the values of the functionals 
v(y) and rw,(7) coincide for y = O W  e. The isoperimetric inequality implies 
that the optimal shape of a crystal C inside the medium M is indeed given 
by W~ (if the volume of the crystal is I W~I). 

R e m a r k s .  1. It is expected from thermodynamic reasons that the 
equilibrium surface tension r is in fact equal to the support function of the 
set W~ defined above. In other words, the surface tension r can be extended 
to a positively homogeneous convex function of degree one to all R a. This 
statement is equivalent to the statement that z satisfies the pyramidal  
inequality. (7"16) The convexity property of ~ has been proven for several 
models of statistical mechanics. (~6) However, in the present paper we do not 
assume that T can be extended to a convex function on ~a. 

2. Recently the above results for the shape of a droplet have been 
proven starting from a microscopic model and first principles of statistical 
mechanics. (8. ~ 7 ) 

When walls are present, the variational problem has to be modified. 
Namely,' the surface tension (or interface free energy) of a surface in contact 
with the medium surrounding the crystal differs from that arising in contact 
with the wall even when the corresponding orientations of the correspond- 
ing pieces of the boundary of the crystal C are the same. Let [] be a unit vec- 
tor in R d, and let 

w(n)-- {x: (x I n ) = a }  (10) 

be a hyperplane describing a wall w(n) perpendicular to [] that is supposed 
to be in contact with the half-space filled by the phase C. By convention the 
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phase C is supposed to occupy the half-space {x: ( x l n ) <  a}. The relevant 
physical quantity here is the difference 

a(n) = ~c,,.(n)-~m..(n) (11) 

where r,,,,.(n) and z,,,,.(n) are the surface free energies of the phase C against 
the wall and of the phase M against the wall, respectively. Since tr(n) is 
a difference of free energies, it may either be positive or negative. When 
r , . , . (n)-r , ,w(n)>~(n) we have a drying situation: in equilibrium, it is 
preferable that the phase M occupies the place between the wall and the 
phase C, and consequently the phase C is not in contact with the wall. On 
the other hand, when zc,,,(n)- z,,,,.(n)~ - r ( n )  we have a (complete) wetting 
situation: in equilibrium, the phase C forms a layer between the wall and 
the medium M. Notice that wetting or drying are relative concepts. In the 
first case we have complete wetting of the wall by the phase M, and in the 
second case we have complete drying of the wall with respect to the phase 
M. In all other cases we speak of partial drying or partial wetting. If we 
consider the properties of the phase C, we say that we have partial drying 
if zc.,(n) - T,,,.(n)/> 0, and partial wetting if zc,,(n) - z,~,,(n) ~< 0. Actually, at 
equilibrium, we have, ~2~ from thermodynamic reasons, the inequalities 

la(n)l = Ir,,,.(n) - rmw(n)l ~< T(n) (12) 

The physical situations described above have been studied rigorously in the 
Ising model, starting from first principles of statistical mechanics, tl~ ~3~ 

Whenever the phase C is in contact with a wall with normal n, we 
must replace the integrand z(n) in the free functional (6) by ~r(n). Since the 
walls are fixed, the problem is no longer translation invariant, and the new 
functional, which we still denote by z(y), is 

with 

r ( V ) = f r ( x ( s ) ,  n(s))ds (13) 

r(x,n)=Str(n), ,  if x~w(n)  
(14) 

~r(n), otherwise 

In simple situations the minimum of this new variational problem can be 
found using the following elementary monotonicity principle. Let T(V) be our 
functional (13). 

If  we can find a convex body W such that 

T(~) t> ~w(~) (M1) 
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for every y, where r w is the support function of  W, and 

r(OW)=~w(OW) (M2) 

then both statements (I) and (S) remain true even after replacing rw(y) 
by z(y). 

This fact is obvious for (I) and follows from the monotonicity of 
_ (~2_ C)I/z as a function of cc (for I~[ 1> x /~ )  for (S). Notice, however, 

that (M2) might be valid only for a particular location of W and, as a 
consequence, the equality in (I) occurs only for a particular set W (and not 
up to a translation). It is the purpose of the next sections to show examples 
where this method can be applied. 

For a basic illustration of the use of (M1) and (M2) [and thus of (I) 
and (S)], we first apply it in Section 2.1 to the well-understood case of a 
crystal on a single wall--Winterbottom shape. 

The cases of partial wetting of an interface (Section 2.2) and partial 
wetting of an interface in the presence of a wall (Section 2.3) were (in a 
slightly different formulation and under more restrictive assumptions) dis- 
cussed by Ziermann. ~231 We include them here since they yield additional 
cases of the remarkably simple solution of the variation problem by our 
geometrical principle. Moreover, in the two-dimensional case we also get 
stability. 

Section 2.4 is devoted to the case of a crystal in a corner. The case of 
convex droplet in a convex corner was presented in ref. 24---here, in 
Section 2.4.1, we again get the simple proof accompanied, for d =  2, by 
stability. The case of nonconvex angle discussed in Section 2.4.2 seems to 
be new, not discussed in the literature. It turns out that the optimal droplet 
does not touch both walls--it stays attached to only one of them. 

In Sections 2.5 and 2.6 we discuss the case of a droplet between two 
parallel walls, restricting ourselves to the two-dimensional case. Since the 
distance of these two walls is fixed, one loses the standard rescaling 
argument used to adjust the given shape to the apriori fixed volume. 
Nevertheless, the optimal crystal can be found and shown to be bordered 
by the walls and properly chosen pieces of Wulff shapes. 

During the completion of this work we received two papers ~3'4) about 
numerical and analytical studies of the shape of droplets in a corner for 
different models of statistical mechanics. The problem mentioned at the end 
of Section 2.2 is treated in ref. 4. A double Wulff construction is used there. 

R e m a r k .  if we consider a droplet of phase M inside the phase C, in 
the presence of the walls, then the functional to minimize is 

f(y) = [ f(x(s), n(s)) ds (15) 
Jr 

822/76/1-2-29 
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with 

f (x ,n)=S- t r (n) , ,  if xew(n)  
(16) 

( z ( - n ) ,  otherwise 

Here, of course, the set occupied by the phase M is F with boundary 
y = OF. 

2. P A R T I C U L A R  A R R A N G E M E N T S  OF W A L L S  

2.1. Crystal  on a Wall 

Let us suppose that we have a planar wall w(n*)= {x ~ Rd: (x In*)= a } 
perpendicular to the unit vector n* (see Fig. 1), and let E =  {x~Rd: 
(x I n*)< a} be the half-space where We have the phases C and M (the other 
half-space is the wall). The overall interface free energy of a crystal F is 
therefore 

r(7) = Iv,. or(n*) ds + ~,i T(n(s)) ds (17) 

where the first integral is over the boundary of the crystal along the wall, 
7 , , .=yn w(n*), and the second integral is over the remaining part of the 
boundary of the crystal, yj = y ~ E. This is a problem with the functional 
r(Y) of the form (13) with T(x, n) defined by (14). 

The solution is well-known. 121,23) Let us briefly recall it. One first 
constructs the Wulff set, 

W~= {xe Ra: (x I n)~< z(n) for every n} (18) 

which corresponds to the ideal shape of the free crystal. Then we take the 

///~M 

Fig. 1. A droplet of phase C in the half-space E. 
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intersection of this set W, with the half-space (which should not be mis- 
taken for the half-space E) 

{x~Ra : (x ln*)~<a(n*)}  (19) 

and we get a new convex subset W, called the Winterbottom shape (see 
Fig. 2). Except for the case a(n*)~< - r (n*) ,  which corresponds to the com- 
plete wetting of the wall by the phase C, and in which the variational 
problem is degenerate [when a (n* )<  - r ( n * )  the infimum of the functional 
is - o o ] ,  the set W is a convex body, but not necessarily containing the 
origin. 

We claim that, in nondegenerate cases, the optimal form of the crystal 
is the Winterbottom shape IV. This is a simple consequence of the 
monotonicity principle. Let rw be the support function of the set IV. Since 
z(n) is always greater than or equal to the support function of the set W, 
we have the inequality 

r(x, n) >/rw(n) (20) 

Therefore, the inequality (M1) is satisfied and the equality (M2) follows 
from (9). The constraint on the volume is satisfied by an appropriate 
scaling. 

In the two-dimensional case we have a stability result. Let r(~,) and 
R(7) be defined by (5a) and (5b) with W the Winterbottom shape. Then 
the Bonnesen inequalities (S) hold with the present functional ~(7) in place 
of rw(y). Notice that in the case r c , . -T  .... < 0  the origin does not belong 
to W. On the other hand, the stability result (S) is proven in ref. 8 only 
under the assumption that the origin belongs to IV. We can always satisfy 
this assumption by applying a shift to W by, sa'y, (re, .-  rm,.) n,,. or any a 
such that (a In,,.)= z c , , - r , , , .  The new set W' contains the origin, but as 
remarked in the introduction, this procedure does not change the value of 
the functional. The shift in this particular case means that we set the inter- 

Fig. 2. The Winterbottom shape W. 
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face free energy on the wall to vanish and compensate for it by changing 
correspondingly the surface tension between the crystal and the medium/TM 
This also shows that the minimum of the functional is strictly positive. 

2.2. Part ia l  W e t t i n g  of  an In te r face  

This case is discussed in detail in ref. 23 (even though the variational 
problem in ref. 23 is slightly different and the assumptions more restrictive). 
We suppose that we have a system with three phases in equilibrium, M~, 
M2, C, and start with a situation in which the two phases M, and M2 
coexist in R a and are separated by a stable flat interface perpendicular to 
n*, I ( n * ) = { x ~ d : ( x  i n* )=0} ,  passing through the origin. Let E + =  
{xERd: (X [ n*)<0}  and E -  = {x~R2: (x I n*)>0}.  The phase M, is in 
E -  and the phase M2 is in E +. The surface tension associated with this 
interface is zL2(n*). We put a droplet of the phase C into the system. By 
inserting this droplet we can create "a hole" in the interface where the 
phases Mt and M_, do not touch directly. We denote by zj(n) the surface 
tension of an interface, perpendicular to n, between the phase C and the 
phase Mj, j= 1, 2. The functional T(y) is similar, but not identical, to the 
functional (13). The surface 0C of the droplet splits into two pieces, 7~ and 
72--the parts of the boundary in contact with the phase M~, M2, respec- 
tively. Notice that, because of the presence of the droplet of phase C, the 
phase M~ may occupy a part of the half-space E § as in Fig. 3. 

In the three-dimensional case, the surfaces yj and Y2 touch along a 
curve in I (in the two-dimensional case illustrated in the Fig. 3 they touch 
in a pair of points a and b). 

The interface free energy of the droplet thus consists of three terms, 

z(~)=f~.,z,(n(s))ds+I,2r2(n(s))cls-~,2.L(7) (21) 

The first two terms in (21) correspond to the surface tension between the 

Fig. 3. The interface and a droplet of phase C. 
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, 

2. 

3. 

4. 

Changing, say, the surface tension rt(n) by the shift 

r'l(n) = rdn)  + ~1.2 - (n* I n) 

crystal and the phases M1, M2, respectively, and the third one to the loss 
of surface tension r,.2 between phases M~ and M2 over the area L(~) of the 
portion of the interface which is missing, because of the presence of the 
phase C. We want to minimize this functional among the following class of 
surfaces ~,4 called compatible with the interface: 

~9, J =  1, 2, are surfaces with a common boundary on a simple 
closed curve in I(n*), 0(71) = 0(y2) c I(n*). 

The infinite interface is broken inside O(y~)= 3(~,2). 

The surfaces y~ and Y2 do not intersect outside their boundary--  
(~ 1\0]  ) 1 ) t'~ (}/2\0~ 2) ~d= ~ .  

The volume of the droplet with the boundary 7 = Yt u Y2 is fixed. 

(22) 

we get 

J'r, r'l(n,) ds = I},, r,(n~) ds - rl,z" L(y) (23) 

We can write (21) as 

r(},)= Ir r'l(ns) ds + Ir2 rz(ns) ds (24) 

Let Wj be the Wulff set defined by rj, j = 1, 2. The set W'~ obtained 
by a translation of W~ by rl.2" n* is equal to the set which we get by per- 
forming the Wulff construction with r',. Let 

W:=  W'I n W2 (25) 

If r m > r l ( - - n * ) + r 2 ( n * ) ,  the set W is empty, and the problem is 
degenerate, the infimum of the functional being - o o .  This situation 
corresponds to a complete wetting of the interface by the droplet of phase 
C. Let us therefore suppose that W is a nonempty convex body. 

We can solve the variational problem if the resulting shape W is com- 
patible with the outside interface being held at a f ixed level--namely, i f  the 
intersection of  0 W' 1 and O W2 is contained in a plane orthogonal to n*. 

Under this assumption, the optimal shape of  a droplet of  volume I WI is 

4 Formulated here in the three-dimensional case. 
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given by W (Fig. 4). Moreover, in the two-dimensional case the stability 
condition ( S) is satisfied. 

If the size of the volume is different, then we get the solution by an 
appropriate scaling of the set W. Let r w be the support function of W. 
Inequality (M1) holds, since zw(n)~<min(T'=(n),r2(n)). Equality (M2) 
follows from (9). Let r(?) and R(7) be defined by (5a) and (5b) with W of 
(25). Then the Bonnesen inequalities (S) hold after replacing r w(?) by 3(?). 

Remark. 1. If the intersection is either W= W'I or W= W2, we 
have the situation of drying of the interface with respect to the phase C. 
Putting a droplet of phase C into the system, the optimal shape is that of 
a droplet inside phase MI or M2. This is again a consequence of the 
monotonicity principle. Let W= W 2, and let r w =rw,  be the support 
function of W. Then for any ? as above, of volume I WI, we have 

J", r >_- Iew r . , =  J" w r 2 (26) 

2. The condition that O W; n 3W 2 lies in a plane I(n*) is presumably 
rather restrictive in the three-dimensional case. Nevertheless, one may 
imagine it to be fulfilled due to a symmetry, getting thus a solution of the 
three-dimensional variational problem. If the intersection does not lie in a 
plane, one has to deform the shape W and possibly also the interface in the 
neighborhood of the droplet. The variational problem in this case is open. 

3. In the two-dimensional case the condition above means that OWl 
and OW2 intersect in two points connected by a line orthogonal to n*. 
If this line were not orthogonal to n*, the shape W would still yield a 
solution to a slightly different variational problem--namely, to the 

M1 

Fig. 4. Optimal shape W of the crystal in the interface. 
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problem where one does not fix the interface on both sides of the droplet 
to be on the same level, but adjusts these levels to minimize the overall 
surface tension. 

2.3. Part ia l  W e t t i n g  of  an In te r face  Boundary  in Presence of  
a Wa l l  

This variational problem is inspired by a very closely related problem 
considered by Ziermann. c23~ We have a crystal in contact with a wall and 
an interface (see Fig. 5). We suppose that we have partial wetting, and 
therefore it is preferable for the droplet to stick to the wall. 

We restrict ourselves to the two-dimensional case here (but similarly 
as in Section 2, the results may be formulated for d =  3 under a similar 
assumption). The interface is perpendicular to n* as in Section 2, and 
the wall is perpendicular to ~, w(fi)= {x e R2: (x I h )=0} .  Without loss of 
generality we suppose that the wall is vertical, ~ = (0, - 1 ) .  The subspaces 
E § and E -  of Section2 are now defined as E §  { x = ( x l , x 2 ) ~ R 2 :  
(x I n * ) <  0, X 1 > 0 }  and E -  = {x s Rz: (x I n* )>  0, x~ > 0}. The phase M 1 
is in E - ,  and the phase Mz is in E +. We denote by aj(fi), j =  1, 2, the free 
energies r~,.(fi)-r,~j,.(fi), where r,,j,.(fi) is the surface free energy of the 
phase Mj against the wall w(fi). Since the media Mj are different, it is 
possible that the free energies of the phases Mj against the wall are dif- 
ferent, and therefore aj(fi) may be different for j = 1 or j = 2. For the sake 
of simplicity we consider crystals F whose boundaries ~, are simple closed 
curves, and F n  w(fi) is an interval [b, a],  with a2 > b2. We denote by •1, 
resp. ?2, the part of the boundary in contact with the phase M~, resp. M2. 
Because of the presence of the phase C, the phase MI may occupy a part 

/ 
/ 

a /1" 

Fig. 5. A droplet of phase C with the wall and the interface. 
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of the subspace E +, or the phase Mz a part of the subspace E - .  The inter- 
face free energy of the crystal consists of five terms, 

~(,)= ~. z,(n(s))ds+ ~,,~2(n(s))ds-rt,2"L(Y) 

+ al(fi)" a2(?) - a2(fi)" b2(?) (27) 

where L(?) is the length of the portion of the interface which is missing, 
because of the presence of the phase C; we use 31.2 to denote, as in 
Section 2, the interface free energy corresponding to a direct contact of 
phases M] and M2 along a line orthogonal to n*. Notice that the last two 
terms in (27) may be positive or negative. They can be written 

(al(fi) - a2(fi)) .az + a2(fi) - (a2 - b2) 

= (~,,2,,,(fi) - r,,,,,(fi)) �9 a2 + a2(fi) �9 (a2 - b2) (28) 

If, for example, a2 is negative, then the last term in (28) is the contribution 
to the free energy of the crystal against the wall, and the first term is the 
contribution to the free energy against the wall due to the phase M~ in the 
subspace E § where we had the phase M2 before introducing the crystal. 
As in Section 2, we minimize the functional r(y) among the following class 
of simple closed 7, called compatible: 

1. ?j, j =  1, 2, are simple curves which do not intersect. 

2. The interface is broken between the origin and a point e(7). 

3. y n w(fi) is an interval [b, a],  ad?)  > b2(?). 

4. The endpoints of ?] are e and a. 

5. The endpoints of ?2 are c and b. 

6. The volume IFI is given. 

We perform two shifts. Let n *• resp. fi• be two unit vectors per- 
pendicular to n*, resp. ft. We change the surface tension Tl(n) into r't(n) by 
the shift 

(n*• n) ( f i •  odfi) (n , •  (29) 
r'l(n) = r l ( n )+  Tl'2" (h i In*) I fi) 

and we change the surface tension z2(n) into r[(n) by the shift 

G(n) = z2(n)-cr2(fi)" (n*• I n) (n,•  i fi ) (30) 

After these shifts the functional becomes 

T(?) = "J)'fl z'](n(s)) ds + d}[.2 ~[(n(s)) ds (31) 
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Fig. 6. The integration paths for proving (31). 

To prove (31), we integrate, for example, z ' l (n(s) ) -z l (n(s) )  along the two 
closed curves of Fig. 6 and we use the fact that the integral is zero. Notice 
the position of the normal n(s) in both cases. 

We interpret the functional given by (31) as the integral along the 
closed curve formed by ~ ,  the interval [a, b], and Y2. When we integrate 
along [a, b] the surface tension is equal to zero. Therefore we define the set 
W as (Fig. 7) 

w-- w~in w=,c~ {x~ R2: (x I fi)~<0} (32) 

I f  the set W is a nonempty convex body, and if  its boundary defines a closed 
compatible curve y, then the optimal droplet has shape W. This an immediate 
consequence of the monotonicity principle. 

Fig. 7. The optimal shape W with a wall and an interface. 
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2.4. Drople t  in a Corner  

Here we have one droplet and two walls of different kinds. We consider 
the d-dimensional case, d~>2, and suppose that the walls are ( d - 1 ) -  
dimensional hyperplanes, and that their intersection has dimension d - 2 .  
The particular situation of two parallel walls is treated in the next section 
in the special case when d =  2. 

We use nj, j =  l, 2, to denote the unit vectors perpendicular to the 
considered walls. One can always suppose that the walls contain the origin 
and therefore the walls are 

{x~ Rd: (x J n j )=0},  j = 1 , 2  (33) 

We treat two cases. The space E containing the droplet is either convex, 

E =  {x~ Rd: (x ] n,) ~<0} n {x~ Ra: (x I n2)~<0} (34) 

or nonconvex, 

E =  {x~Ra: (x I n,)~<0} u {xe  Ra: (x I n2)-N<0} (35) 

The variational problem is to minimize the functional given by (13) and 
(14) for all simple (i.e., without self-intersection) closed hypersurfaces 
?, = OF which are contained in E, and which are the boundary of a set I FI 
of fixed volume. In order to avoid degenerate cases we also suppose that 
we have partial wetting for both walls, 

Icr(nj)l ~< ~(nj), j =  1, 2 (36) 

Let W~ be the Wulff crystal and let 

W--WTc~{x~Ra:(x ln~)~<cr(n , )}n{x~Ra:(x ln2)~<~r(n2)}  (37) 

Several cases may occur. 

2.4.1. W is N o n e m p t y  and E is Convex.  If Wis nonempty and 
E is convex, the solution of the variational problem is straightforward. 
(This case is considered in ref. 24.) 

Namely, the optimal droplet has the shape IV. The correct volume is 
obtained by an appropriate scaling. The point to notice is that any W can 
be rescaled in E to yield a droplet of any given volume (and the shape W). 
The answer to the variational problem is therefore a direct consequence of 
the monotonicity principle. Several possibilities for the intersection W yield 
the shapes of droplets as illustrated in Fig. 8. In cases (a)--(c) there is only 
one optimal droplet for a given volume, which lies in the corner. On the 
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Fig. 8. Possible shapes of crystals. 

other hand, in case (d) the droplet is repelled from the corner; it favors to 
be attached to only one wall--we get a Winterbottom shape. 

In the dimension d =  2, we have again the stability result in the form 
of Bonnesen's inequalities (S) with rw(Y) replaced by r(7). 

2.4.2. W is Nonempty  and E Nonconvex. Let W be non- 
empty, but E nonconvex. We use w(nj) to denote the part of the boundary 
of E which is perpendicular to the vector nj and Wj to denote the corre- 
sponding Winterbottom shape 

wj= w~n {x ~ Rd: (x I n;) ~<~r(nj)} (38) 

The optimal shape of a droplet is given by that set Wj for which I Wjl = 
min{I W,h IWzl}. 

The main point is to show that any optimal droplet cannot 
simultaneously touch both walls w(n,) and w(n2). Let F be the set occupied 
by the crystal C. There are two cases to be treated separately. First, the 
boundary 7 of F may touch either only one wall or no wall at all. In this 
case we compare r(7) with a Winterbottom shape Wj of volume IFI (and 
get our claim). 

The second possibility is that 7 touches both walls. In order to treat 
this case we reduce the situation to a convex one so that we can apply our 
monotonicity principle. To this end, we introduce an auxiliary wall if, as 
shown in Fig.'9, which passes through {X~I~d:(xln,)----0}C~{XeI~d: 
(X I n2)=0},  so that the wall if, splits the space E into two convex subsets 
E' and E". In the "surface tension space," where we draw the surface 
tension plot, we consider the hyperplane l= / ( f f )  passing through 
{x~Rd: (x I n l ) = a ( n , ) }  n {x~Rd: (X I n2)=a(n2)} and having the same 
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Fig. 9. 
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E" 

The auxiliary wall ~, and the sets ffz, and if'". 

direction as rb. This hyperplane divides the set i f ' =  W~ w W 2 into two 
convex sets fir' and if'" (see Fig. 9). 

The set F is the union of the sets F '  := E '  n F and F"  :=  E" c~ F, and 
we have 

~(aF) >1 r w,(OF') + ~ w-(OF") (39) 

[The contributions from 8F 'n ,~ ,=OF"c~  to rw,(OF') and zw,,(OF") 
compensate each other.]  Without  loss of generality we suppose that 
IFI = I ff'[. Let us assume further that a wall ff can be found in such a way 
that it splits F so that IF'I  = I ff"l and IF"I = I ff'"l. F rom (39) and the 
isoperimetric inequality we have 

v(OF) ~ v m,(0 I~') + v m,(0 I~") = v w(O I,V) = d ll~l (40) 

If the above hypothesis is not  satisfied, a simple continuity argument  shows 
that we can split the space E into a half-space, say E',  and a convex cone 
E", such that 

II-'I:=A'IW'I, 2 ' > 1  and I I ' l :=A"l f f " l ,  2 " < 1  (41) 

We proceed as above, 
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>/d(2,)ia- ,)/a i W,  I + d(2,,)(a- l)/a )ff'"l 

d d 
,t" ff'"[ 

(2') j/a 

d 
~> ( ~  (,t' Iff"l + 2 "  I ff'"l) 

d 
= (2,)l/a I ff/I (42) 

We can compare this lower bound with the one that can be attained by a 
set 12~ of the shape W t and of full volume 1~2~1 = I ff 'l = IFI .  Defining/x by 
[FI=/xlW~I,  we have (since E'  is a half-space) IFI =/x IWtl=/~ Iff"l > 
2' I ff"l, and 

r( dt'21) = d ; ~il (d- l )/d I W l l l/a 

d 
= #~ t/,I [WI 

d 
(43) 

This finishes the proof. 

R e m a r k .  In the case of convex E and empty IV, a solution is 
proposed for d =  2 in ref. 24 under the name "summertop construction," 
because it is a kind of dual construction to the Winterbottom construction. 
We can justify this result using our monotonicity principle for a res t r ic ted  
class of droplets. Some ideas as well as difficulties that would occur in our 
proof appear also in the next section. For that reason we do not present 
our partial results here. 

2.5. Droplet Between Two Parallel Walls ( d = 2 )  

A new feature appears in this problem. Namely, in the preceding cases 
we were able to take into account the constraint on the volume of the 
droplet by rescaling the (correspondingly cut off) Wulff shape. Now, since 
the droplet is constrained to lie between two parallel walls of fixed distance, 
this is no longer possible. The confining aspect of the geometry of the 
problem changes the shape of the optimal droplet when its volume is large. 

For the first time we use in this section the two-dimensional character 
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of the space in all arguments; we suppose that the two walls are horizontal 
and are characterized by the surface free energy differences [cf. (1I)]  <r(nl) 
and a(n2) with n, = -n2.  Further, let us suppose that 

W = W , n { x 6 R Z : ( x l n , ) ~ < a ( n , ) } n { x ~ R Z : ( x l n 2 ) ~ < a ( n 2 ) }  (44) 

is a nonempty convex body. 
The variational problem to solve is again the one given by (13) and 

(14), taking for ), = OF a simple closed curve between two walls defined by 
the equations 

{x~R2z(x I n=)=d) and {x~ R2: (x I nz)= - d }  (45) 

under the condition of a fixed volume IFI. 

2.5.1. Complete Drying Case. Let us suppose first that Cahn's 
inequality (12) is saturated, i.e., a(ni) = z(ni), i=  1, 2. In this case we have 

W= W~ (46) 

There exists the greatest value [W*I of the volume of a droplet W* of 
shape W which can be put between the two walls. If I FI ~< I W*h then the 
optimal shape of  the droplet is W = W,. This follows from the monotonicity 
principle. 

Let us therefore suppose that IFI > I W*I and let W* be a droplet of 
shape W and volume I W*I. We define the new set if" by taking (see 
Fig. 10) 

i f ' :=  U (W*+(x,,0)) (47) 
O ~ x l ~ a  

Here the value a is chosen so that the volume of if" is equal to IFI. If 
LFI >--IW*h then the optimal shape of  the droplet is if'. 

To prove this fact, we first define Wd' = W*, W* = W* + (a, 0), and 
also i f '=  I, Jo~<x, (W* + (x, ,  0))\W0*. Using the translation invariance of 
the problem, we can always suppose that 

C o : = r \ f f "  (48) 

has the Lebesgue measure I W*I. The subset F o describes one or several 
droplets of total volume W*, so that by the isoperimetric inequality 

r(aFo) t> r(a W*) (49) 
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We define the new droplet  F '  of total volume larger than or equal to IFI 
by taking 

r '  := w ~  u ( r \ r o )  (50) 

Since OFo\dFc OW~, we have 

z(dF) ~> r ( a F ' )  (51) 

Notice that  F '  is connected. We transform now also the set F '  in a similar 
manner  with the help of W*. The Lebesgue measure of the set 

F~ := F ' \ ( f f ' \ W * )  (52) 

is greater than or equal to I W* h and we define 

r "  ,.= w * u ( r ' \ w * )  (53) 

For  the same reason as above,  taking into account that  ]F,~l ~>lW*h the 
isoperimetric inequality shows that 

r(OF') >1 r (0F" )  (54) 

Now,  let us consider the set f f ' \ F " .  We use 12, to denote the union of 
the connected components  of  f f ' \F"  that are connected to the wall 
{x e R2: (x I n l ) =  d}, and 0 2 to denote the union of the connected com- 
ponents  that  are connected to the wall {x e Rz: (x I nz) = - d } .  These sets 
may be empty,  but in any case we have 12, c~ I22 = 0 ,  because the set F is 
connected and therefore the same is true for F".  If the set g21 is nonempty,  
then it describes one or several droplets of  the phase M inside the phase C. 
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The surface free energy of the droplets is given by (15) and (16), and is 
equal to f(at2~). Taking into account our assumption that cr(ni)= z(ni), we 
have f(c3I-2t)/>0. This last assertion is first proven in the case where a(nj) = 
z (n j ) -e ,  by comparison with a Winterbottom shape of volume IQII. Then 
we let e vanish. The boundary c'~121 =co I of Ol can be decomposed into 
o9'1 :=o91 n t3F" and co' I' :=co~ haf t ' .  We get 

t "  
e(Oo, ) = / r(n(s)) d s -  a(nt ) .  Io~;'1/> 0 (55) 

J,o 

where IoJ;'l is the length of co;'. A similar inequality can be derived for the 
set/22. Thus 

r(~) >1 r (OF")  >1 r(Off ' )  + f(Of2~ ) + i(0122) >/r(O if') (56) 

This finishes the proof. 

2.5.2. Par t i a l  W e t t i n g  Case .  If only one wall, say the wall 
{xeN2: ( x l n ~ ) = d } ,  is partially wetted, then all results of Section 2.5.1 
hold true with 

W= W~c~ {xE R2: (x I nt)~<tr(nl)} (57) 

Let consider the case when both walls are partially wetted, and let us 
assume that W is a nonempty convex body. We can define the set W* 
exactly as in Section2.5.1. The results for droplets with ]FI/> I W*I are 
similar to those of Section 2.5.1 and are proved in exactly the same manner. 
Let us consider the range of volumes I/7 < t W*I. We sketch the main 
arguments. 

We first introduce the following subset of W*. Let R be the maximal 
rectangle of the form 

{ x ~ R2: b' <<. x j  <<. b", - d <<. x,_ <~ d} (58) 

that can be placed inside W*. Removing this rectangle from W* and gluing 
together the two remaining parts, we define the set /g," of volume ]/~'1; see 
Fig. 11. 

For the range of volumes ] WI ~< IFI ~< T W*] there are three possibilities 
for the position of y, which are treated separately. In each of these cases, 
we find a lower bound for z(7), and then compare the results for all three 
cases. First of all, the droplet may touch no wall at all, or it may touch 
only the wall {x ~ R2: (x I n l ) =  d}. By the monotonicity principle, we have 

~(7)/> T w,(7) (59) 
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where W~ is the Winterbottom shape 

W 1 = W n  {x~ R2: (x I n l ) = a ( n l ) }  (60) 

Similarly we may have a droplet which does not touch the walls or touches 
only the wall {x e R2: (x I n2)= -d} .  We have 

T(y)/> r w2(Y) (61) 

Finally we have to consider the case of droplets that touch both walls. By 
an obvious surgery we can transform such a droplet into a droplet of 
volume I W*l, by "adding a rectangle" of volume I W*I - IFI of phase C. 
After this construction the horizontal length of the hew droplet has 
increased by k, with 2dk= I W * l -  IF]. More precisely, the new droplet 
whose boundary we denote by ~7 is obtained by shifting the right-hand por- 
tion of the boundary 7 connecting both walls by the appropriate horizontal 
vector of the length k. We have 

r('~) -- r(y) + k(a(n, ) + ~r(n2))/> r(O W*) -- 2 I W*I (62) 

Since ] WI ~< IFI, we must have b" - b' >i k. Therefore, we can remove from 
W* a rectangle R(k)  of volume 2dk and we get a new set called ff'(k). By 
definition of this set, 

r(0 ff'(k)) = T(OW*) - k(a(nl) + or(n2)) = 2 I W*l - k(a(n~ ) + a(n2)) (63) 

and thus 

v(7) i> v(O l,~(k)) (64) 

We can now compare the minima in the three cases reaching the values 
2 tFI 1/2 [ Wtl 1/2, 2 I/'l 1:2 I W21 I/2 and (63), and find the smallest one yielding 
the optimal shape of the droplet of volume IF]. This procedure works 

822/76/I-2-30 
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because b" - b' >/k. The case b" - b' = k corresponds to the case I FP = I I,~'[. 
Here the optimal shape is the Winterbottom shape W i with I Wel = 
min{IW, h IW2r}. Indeed, by definition of I~ there is at least one of the 
walls which has only one point in common with I,~'. If, for example, this is 
the wall {x E R2: (x I n2) = -d} ,  then we have 

z(d I,~') >~ r w,(d I~) (65) 

and therefore the optimal shape is a Winterbottom shape. 
For JFI ~< I WI we were not able to show, using the above method, that 

the optimal shape is a Winterbottom shape. However, if IFI is sufficiently 
small, an a pr ior i  estimate shows that we always have a Winterbottom 
shape as the optimal one. 

2.6. D rop le t  B e t w e e n  T w o  Paral lel  Wal ls  w i t h  a Lid 

In this final example we consider the situation described in the 
preceding section restricted further by a third perpendicular wall (the lid) 
closing the strip 

S =  {x~ R2: I(x I n,)l ~<d} (66) 

at one, say the left-hand side (see Fig. 12). Even though more general cases 
can be analyzed, for simplicity we will restrict ourselves to the situation of 
Section 2.5.1 with tr(n~) = z ( n i ) ,  i = 1, 2, and suppose the fourfold symmetry 
z(n) = "t'(en), where en is any coordinate reflection of n. 

Consider, again, the Winterbottom shape 

14/= W~n {x~ R2: (x I n3)~o-(n3) } (67) 

and W*, the maximal rescaling of this shape that matches into the strip S, 

Fig. 12. Winterbottom droplet 14,' and its rescaling IV* matching the strip. 
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as well 
into S. 

Let 
We will 

(a) 

(b) 

(c) 

(a) 

as W*, the maximal rescaling of the full Wulff shape W~ matching 

us suppose first that the lid is strongly wetted, - ' r (n3 )<  o'(n3)~<0. 
distinguish three cases: 

IF[ < I W*I. 

IFI e [I W'l ,  11W~*I ]. 

Lrl > 11 w~*l. 

Clearly, if IFI ~< I W*I, the optimal shape is the appropriately res- 
caled Winterbottom shape W attached to the lid. 

(b) For each A:IW*I<<.A<~IIW*I, consider the intersection 
W(A) = W, c~ {x~ R2:xl >~ xl(A)}, where xl(A)  <~ la(n3) I is uniquely 
chosen so that the area of the rescaled set W(A)* equals A. Here W(A)* 
is the shape W(A) rescaled to match accurately into S. The optimal shape 
for I FI ~ [I W*I, 11 W~*I ] is the shape W(IFI )* attached to the lid. 

To verify this, we just notice that for all curves y containing all the 
length 2d of the lid one has ~(~')>~rw~A~(Y) by monotonicity. Notice that 
this is true even in the class of curves not restricted to the strip S. At the 
same time, clearly, r(0 W(A )*) = ~ W~a I(0 W(A )*). 

(c) In a similar way one can verify that for IFI > IIW*I, the optimal 
droplet consists of a rectangle of the area 2kd, k = (2 I F I -  I W~*I )/4d, with 
half of the set W* attached on the right-hand side of it. 

See Fig. 13 for a sequence of droplets with growing areas through 
stages (a)-(c). 

If 0 < a(n3) ~< ~(n3), partial drying, there are only two cases: 

(a) [FI~<IW*I. 

(b) IFI>IW*I.  

The optimal shape in case (b) consists of W* with the rectangle 2kd 

Fig. 13. A sequence of crystals of different volumes in a tube with lid in the case of partial 
wetting. 
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Fig. 14. A sequence of crystals of different volumes in a tube with lid in the case of partial 
drying. 

inser ted  in a s imi lar  way  as in the  cons t ruc t i on  of  if" in Sec t ion  2.5.1. See 

Fig. 14 for a sequence  of  g rowing  droplets .  N o t i c e  tha t  the co rne r s  where  

the lid is t ouch ing  the walls  stay a lways  dry. 
In  all cases a b o v e  we have  also the s tabi l i ty  (S). The  s y m m e t r y  condi -  

t ion of  z was a s sumed  only  for the ease of  the fo rmula t ion .  A s t r a igh t fo rward  

genera l i za t ion  to a less symmet r i c  W~ (for example ,  the one  on  Fig. 2) can  

be easily fo rmula ted .  
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